11-5 day 2
I. Use the limit process to find the area of the region between the graph of the function and the x-axis over the given interval.

$$
\begin{aligned}
& \text { Ex 1) } f(x)=3 x-x^{2}[1,2] \quad a=1 \quad b=2 \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(1+\frac{(2-1) a}{n}\right)\left(\frac{2-1}{n}\right)=\sum_{i=1}^{n} f\left(1+\frac{i}{n}\right)\left(\frac{1}{n}\right) \\
& =\sum_{i=1}\left[3\left(1+\frac{i}{n}\right)-\left(1+\frac{i}{n}\right)^{2}\right]\left(\frac{1}{n}\right)=\sum_{i=1}^{n}\left[3+\frac{3 i}{n}-\left(1+\frac{3 i}{n}+\frac{i^{2}}{n^{2}}\right)\right]\left(\frac{1}{n}\right) \\
& =\sum_{i=1}^{n}\left(2+\frac{i}{n}-\frac{i^{2}}{n^{2}}\right)\left(\frac{1}{n}\right)=\sum_{i=1}^{n} \frac{2}{n}+\frac{i}{n^{2}}-\frac{i^{2}}{n^{3}} \\
& =\frac{1}{n} \sum_{i=1}^{n} 2+\frac{1}{n^{2}} \sum_{n=1}^{n} i-\frac{1}{n^{3}} \sum_{n=1}^{n} i^{2}=\frac{1}{n}-2 n+\frac{1}{n^{2}}\left(\frac{n(n+1)}{2}\right)-\frac{1}{n^{3}}\left(\frac{n(n+1) 6}{6}\right. \\
& =2+\frac{n+1}{2 n}-\left(\frac{2 n^{2}+3 n+1}{6 n^{2}}\right)= \\
& =\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} \frac{n \times 1}{2 n}-\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{6 n^{2}}=2+\frac{1}{2}-\frac{2}{6}=\frac{13}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 2) } f(x)=4 \times+1[0,1] \quad a=0 \quad b_{1}=1 \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(0+\frac{(1-0)_{i}}{n}\right) \cdot\left(\frac{1-0}{n}\right)=\sum_{i=1}^{n} f\left(\frac{1 i}{n}\right)\left(\frac{1}{n}\right) \\
& =\sum_{i=1}^{n}\left[4\left(\frac{i}{n}\right)+1\right] \cdot\left(\frac{1}{n}\right)=\sum_{i=1}^{n} \frac{4 i}{n^{2}}+\frac{1}{n} \\
& =\frac{4}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n} \sum_{i=1}^{n} 1 \\
& =\frac{4}{n^{2}}\left(\frac{n(n+1)}{2}\right)+\frac{1}{n} \cdot n \\
& =\frac{2(n+1)}{n}+\frac{n}{n}=\frac{3 n+2}{n} \\
& \lim _{n \rightarrow \infty} \frac{3 n+2}{n}=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 3) } f(x)=2-x^{2} \quad[-1,1] \quad a=-1 \quad b=1 \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(-1+\frac{(--1)_{i}}{n}\right) \cdot\left(\frac{1--1}{n}\right)=\sum_{i=1}^{n} f\left(-1+\frac{2 i}{n}\right) \cdot\left(\frac{2}{n}\right) \\
& \sum_{i=1}^{n} 2-\left[\left(-1+\frac{2 i}{n}\right)^{2}\right]\left(\frac{2}{n}\right)=\sum_{i=1}^{n} 2-\left[1-2\left(\frac{2 i}{n}\right)+\frac{4_{i}{ }^{2}}{n^{2}}\right]\left(\frac{2}{n}\right) \\
& \sum_{i=1}^{n} 2-\left[1-\frac{4 i}{n}+\frac{4 i^{2}}{n^{2}}\right]\left(\frac{2}{n}\right)=\sum_{i=1}^{n}\left(1+\frac{4 i}{n}-\frac{4 i^{2}}{n^{2}}\right)\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n} \frac{2}{n}+\frac{8_{i}}{n^{2}}-\frac{\delta_{i}^{2}}{n^{3}}=\frac{2}{n} \sum_{i=1}^{n} 1+\frac{8}{n^{2}} \sum_{i=1}^{n} i-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\frac{2}{n} \cdot n+\frac{8}{n^{2}}\left(\frac{n(n+1)}{2}\right)-\frac{8}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =2+\frac{4(n+1)}{n}-\frac{4\left(2 n^{2}+3 n+1\right)}{3 n^{2}}=2+\frac{4 n+4}{n}-\frac{8 n^{2}+12 n+4}{3 n^{2}} \\
& =\lim _{n \rightarrow \infty} 2+\frac{4 n+4}{7}-\frac{8 n^{2}+12 n+4}{3 n^{2}}=2+4-\frac{8}{3}=\frac{10}{3}
\end{aligned}
$$

