2.3 Real Zeros of Polynomial Functions Day 1

I. Long Division

Ex 1) $\left(6 x^{3}-19 x^{2}+16 x-4\right) /(x-2)$

Ex 2) $\left(x^{5}+3 x^{3}-4\right) /\left(x^{2}+x-1\right)$
$x ^ { 2 } + x - 1 \longdiv { x ^ { 5 } + 0 x ^ { 4 } + 3 x ^ { 3 } - x ^ { 2 } + 5 x - 6 } + \frac { x ^ { 2 } + 1 x - 1 } { }$

II．Synthetic Division－－short cut，only works when dividing by $\mathbf{x}-\mathbf{k}$ ．
Ex 3）$\left(x^{4}-10 x^{2}-2 x+4\right) /(x+3)$

Ex 4）$\left(2 x^{3}+14 x^{2}-20 x+7\right) /(x+6)$

$-6 \mid$	14	-20	7
\vdots	-12	-12	192
2	2	-32	199

Remainder Theorem：If a polynomial is divided by $x-k$ ，the remainder is $r=$ f（k）．

Ex 5）Use the remainder theorem to evaluate when $x=-2$ if

$$
\begin{aligned}
& f(x)=3 x^{3}+8 x^{2}+5 x-7 . \\
& f(-2)=3(-2)^{3}+5(-2)^{2}+5(-2)-7 \\
& \begin{array}{l}
=3(-8)+8(1)+10-7 \\
=-29+32-17
\end{array} \\
& \begin{aligned}
&=-29+32-17 \\
& 8-17
\end{aligned} \\
& \begin{array}{c}
-2 \int \begin{array}{cc}
3 & 8 \\
i & -6
\end{array}- \\
3 \\
f(-2)=-9
\end{array} \\
& \text { こーこりならマーノス } \\
& =-97
\end{aligned}
$$

Ex 7) $f(x)=x^{4}-4 x^{3}-15 x^{2}+58 x-40$, factors are $(x-5)$ and $(x+4)$

