2-3 Day 2
I. Find all the zeros of the function.

II. Decartes Rule: helps ID the possible number of real zeros. See
$\left.\begin{array}{l}\text { page 120. } \\ \text { Ex (-x) } f(x)=3 x^{3}-5 x^{2}-6 x-4 \\ \text { yes yes }\end{array} \quad f(-x)=3(-x)^{3}-5(-x)^{2}+6-x\right)-4$
POS.: 3 ont pos Pos.: 3 ont posizeros
neg.: none
III. Upperbound and Lowerbound Rules: Page 121 (use synthetic division) 1. If $x>0$ and each number in the last row is positive or zero, then x is an upperbound.
2. If $x<0$ and each number in the last row alternate positive and negative signs, x is a lower bound.

Ex 3) $f(x)=2 x^{4}-8 x+3$
Verify that the upper bound is $x=3$
and that the lower bound is $x=-4$

$$
\begin{array}{l|llll|l}
x & 2 & 0 & 0 & -8 & -8 \\
\hline 3 & 2 & 6 & 18 & 46 & 141 \\
-4 & 2 & -8 & 32 & -136 & 547 \\
& & & & \text { all positives }
\end{array}
$$

