2-5 The Fundamental Theorem of Algebra
Fundamental Theorem of Algebra P. 135
If $f(x)$ is a polynomial of degree n, where $n>0$, then f has at least one zero in the complex number system (which means reals and nonreals.

1. Find all the zeros of the polynomial and write the linear factorization.

$$
\begin{aligned}
& \begin{array}{l}
\text { Ex4) } 1(x)=x^{2}+6 x-2 \\
a=1 \\
b=6
\end{array} \quad x=\frac{-6 \pm \sqrt{\left.6^{2}-4 n\right)(-2)}}{2(1)} \\
& c=-2 \quad x=-\frac{6 \pm \sqrt{44}}{2} \rightarrow \sqrt{4} \cdot \sqrt{11}=2 \sqrt{11} \\
& x=-\frac{6 \pm 2 \sqrt{11}}{2} \\
& x=-3 \pm \sqrt{11} \\
& (x-(-3+\sqrt{11})][x-(-3-\sqrt{11})] \\
& (x+3-\sqrt{11})(x+3+\sqrt{11})
\end{aligned}
$$

