Day 2 on 2.5
Find a polynomial with the given zeros.
Ex 1) $-1,-1,3 i,-3 i$

$$
\begin{aligned}
& (x+1)(x+1)(x-3 i)(x+3 i) \\
& \left(x^{2}+2 x+1\right)\left(x^{2}-9 i^{2}\right)=\left(x^{2}+2 x+1\right)\left(x^{2}+9\right) \\
& x^{2}\left(x^{2} 42+2+1\right)+9\left(x^{2}+2 x+1\right) \\
& =x^{4}+2 x^{3}+\underline{x}^{2}+2 x^{2}+18 x+9=x^{4}+2 x^{3}+10 x^{2}+18 x+9
\end{aligned}
$$

Ex 2) $f(x)=x^{2}+1$ is said to be irreducible over the reals and is prime. But we can still write a linear factorization.

$$
(x+i)(x-i)
$$

$$
\begin{aligned}
& x^{2}-2 \\
& (x-\sqrt{2})(x+\sqrt{2})
\end{aligned}
$$

Ex 3) Use the given zero to find all the zeros of the polynomial.

$$
\begin{aligned}
& \text { Ex 4) Use the given zero to find all the zeros of the polynomial. } \\
& f(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60 \\
& \text { zero: } 1+3 i, 1-3 i, 3-2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r|cc|c}
1-3 i & \mid & -2+3 i & -5-3 i \\
& 1-3 i & 6-18 i \\
\hline 1 & -1 & -1+3 i & -6+18_{i} \\
x^{2}-x & -6 & 0
\end{array} \\
& \begin{array}{l}
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x-3=0 \quad x+2=0
\end{array} \\
& \begin{array}{ll}
x=3 & x+2=0 \\
x=-2
\end{array}
\end{aligned}
$$

