2.6 Rational Functions \& Asymptotes Day 1

A Rational Function can be written in the form: $\quad f(x)=\frac{N(x)}{D(x)}$
${ }^{*} N(x)$ and $D(x)$ are polynomials where $D(x) \neq 0$

Ext) Graph $f(x)=\frac{1}{x}$ and find:

Domain: $(-\infty, 0) \cup(0, \infty)$
Intercepts: non
Increasing: now one
Decreasing $(-\infty, 0) \cup(0, \infty)$
Vertical Asymptote: $X=0$
Horizontal Asymptote:

$$
y=0
$$

Asymptotes:

1) Vertical: Zeros of the denominator
2) Horizontal: $n=$ degree of numerator, $m=$ degree of denominator
a) $n<m ; y=0$ (the axis) is a horizontal asymptote
b) $n=m ; y=\frac{a_{n}}{b_{n}}$ is a horizontal asymptote
$a_{n}=$ leading coefficient of numerator
$\mathrm{b}_{\mathrm{n}}=$ leading coefficient of denominator
c) $n>m$; no horizontal asymptote

Find the domain, vertical and horizontal asymptotes. (Graph and Check)

Find the domain, vertical and horizontal asymptotes. (Graph and Check)

$$
\begin{aligned}
& \operatorname{Ex3}\left(f(x)=\frac{2 x}{3 x^{x}+1}\right. \\
& 3 x^{2}+1=0 \\
& 3 x^{2}=-1 \\
& \sqrt{x^{2}}=-\frac{1}{3}
\end{aligned}
$$

$D:(-\infty, \infty)$
V.A.: none

HA.: $n<m: y=0$

Find the domain, vertical and horizontal asymptotes. (Graph and Check)

$$
\text { Ext) }(x)=\frac{x+x-2}{x-x-6}-\frac{(x+2)(x-1)}{(x-3)(x+2)}=\frac{x-1}{x-3}
$$

$D:(-\infty,-2) \cup(-2,3) \cup(3, \infty)$

$H_{A}: n=m \therefore y=1 \quad \quad \quad$ cancel $=h_{0 / e s}$

Find the domain, vertical and horizontal asymptotes. (Graph and Check)

$$
\begin{aligned}
& E x 5)(x)=\frac{3 x^{2}+7 x^{2}+2}{4 x^{2}+5} \\
& -4\left(x^{3}+5=0\right. \\
& -4 x^{3}=-5 \\
& \sqrt[4]{x^{3}}=\sqrt{\frac{5}{4}} \\
& x=\sqrt[3]{\frac{5}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { D: }\left(-\infty, \sqrt[3]{\frac{5}{4}}\right) u\left(\sqrt[3]{\frac{5}{4}}, \infty\right) \\
& \text { VA : } x=\sqrt[3]{\frac{5}{4}} \\
& \text { HA: } n=m: \therefore y=-\frac{3}{4}
\end{aligned}
$$

Find the domain, vertical and horizontal asymptotes. (Graph and Check)

Exc) $f(x)=\frac{x-3}{|x|}$
$D:(-\infty, 0) \cup(0, \infty)$
V.A. $x=0$

HA.: $n=m$
$y=1$ toright
$y=-1$ to left

