### 2.6 Rational Functions and Asymptotes Day 2

Find the zeros of the function. (the zeros of the numerator)

$$
\begin{gathered}
\text { Ext) } g(x)=\frac{x^{2}-9}{x+2}=\frac{(x+3)(x-3)}{x+2} \quad y=\left(x^{2}-9\right) /(x+2) \\
\text { Zeros: } x+3=0 \quad x-3=0 \\
x= \pm 3
\end{gathered}
$$

Ex2) $h(x)=5+\frac{3}{x+1}$
no real zeros

Ex3) A utility company burns coal to generate electricity. The cost $C$ (in dollars) of removing $\mathrm{p} \%$ of the smokestack pollutants is given by:

$$
C=\frac{80,000}{100-p} \text {, for } 0 \leq p \leq 100
$$

Using a graphing utility to graph this function. you are a member of a state legislature that is considering a law that would require utility companies to remove $90 \%$ of the pollutants from their smokestack emissions. The current law requires $85 \%$ removal. How much additional cost would there be to the utility company because of the new law?

$$
c=\frac{80000(100-85}{100}=8453,333.33
$$

$$
c=\frac{80000(90)}{100-90}=\$ 720,000
$$



$$
\$ 720,000-453,333.3
$$

$$
336
$$

Ex 4) For a person with sensitive skin, the amount of time T (in hours) the person can be exposed to the sun with a minimal burning can be modeled by:

$$
T=\frac{0.37 \mathrm{~s}+23.8}{\mathrm{~s}}, 0 \leq \mathrm{s} \leq 120
$$

where $s$ is the Sunsor Scale reading. The Sunsor Scale is based on the level of intensity of UVB rays.
a. Find the amount of time a person with sensitive skin can be exposed to the sun with minimal burning when $s=10, s=25$, and $s=100$.
$S=10 \Rightarrow T=\frac{0.37(10)+23.8}{10}=2.75 \mathrm{hrs}$.
$S=25 \Rightarrow T=0.37(25)+738$
$S=25 \Rightarrow T=\frac{0.37(2 \mathrm{~s})+73}{25}=1.32 \mathrm{hrs}$.
$S=100 \Rightarrow T=\frac{0.37(100) \mathrm{f} 288}{}=0.61 \mathrm{hrs}$.
b. If the model were valifof roll $s>0$, what would be the horizontal asymptote of this fuction, and what would it represent?

$$
\begin{aligned}
& n=m: y=0.37 \\
& \text { shortest possible expose tine } \\
& \text { with wining burning }
\end{aligned}
$$

