3.1 Exponential Functions and Their Graphs

Exponential Function: $f(x)=a x, a>0, a \neq 1, x$ is a real \#
Graph and discuss: $y=2^{x} \quad y=4^{x} \quad y=6^{x}$
$\left(\frac{1}{2}\right)^{X}=2^{-X}\left[\begin{array}{l}y=2^{-x} \\ y=(1 / 2)^{x}\end{array}\left\{\begin{array}{l}y=4-x \\ y=(1 / 4)^{x}\end{array}\left\{\begin{array}{l}y=6-x \\ y=(1 / 6)^{x}\end{array}\right.\right.\right.$
I. Use a calculator to evaluate each to 3 decimal places.
Ex 1) $f(x)=3.4 x \quad$ when $x=6.8$

$$
P(x)=4112.033
$$

Ex 2) $f(x)=8.6-3 x \quad$ when $x=-\sqrt{2}$

$$
r(x)=9220.217
$$

III. Transformations: Describe the transformations starting with $f(x)$.

$$
\begin{aligned}
&\text { Ex } 5) f(x)=\left(\frac{3}{5}\right)^{x}, g(x)=-\left(\frac{3}{5}\right)^{x+4}+2 \\
& x+4 \text { Yurts to the left } \\
& \text { : reflect on er x-axis } \\
& \text { 2: } 2 \text { units up }
\end{aligned}
$$

IV. Review of Exponents: Bottom of page 177
V. The Natural Base e--same characteristics as $f(x)=a \times$
(e is approximated from the expression $(1+1 / x) \times$ for very large values of x.

Graph $y=2 \times$
$y=e^{x}$
$y=3^{x}$
$\theta=2.718281828$

Ex 6) Use a calculator to evaluate to three decimals.

$$
f(x)=100 \mathrm{e} .001 \mathrm{x} \quad \text { when } \mathrm{x}=12 . \quad f(x)=101.207
$$

