Day 2 on 3.1
I. Graph and ID any asymptotes.

$$
\begin{aligned}
& \text { Ex 1) } y=4^{x+1}-2 \\
& H: A: y=-2 \\
& y=4 \wedge(x+1)-2
\end{aligned}
$$

II. Graph and find intervals of increasing and decreasing and any minima and maxima values.

$$
\begin{aligned}
& \text { Ex2)f(x)=x(23x)} \\
& \text { increasing: }-\infty, 1.44) \\
& \text { decreasing: }(1.44, \infty) \\
& \text { max: }(1.44,4.25)
\end{aligned}
$$

III. Compound Interest: $t=$ years, $p=$ principal, $r=$ rate, $A=$ balance in account

1. For n compounding per year use:

2. For continuous compounding use: $A=p e^{r t}$

Ex 3) A total of $\$ 9000$ is invested at an annual interest rate of 2.5% compounded

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{1 t} \\
& A=9080\left(1+\frac{0.025}{1(5)}\right. \\
& A=410.82 .67
\end{aligned}
$$

Ex 4) $\$ 12,000$ is invested at 3%. What is the balance after 4 years if ...
A) compounded quarterly? B) continuously?

Ex 5) Radioactive Decay: Let y represent a mass of radioactive strontium, in grams, whose half-life is 28 years. The quantity of strontium after t years is $y=10(1 / 2)^{t / 28}$.

$$
\begin{aligned}
& \text { a) What is the initial mass (when } t=0 \\
& y=10\left(\frac{1}{2}\right)=10101=10 \mathrm{~g}
\end{aligned}
$$

b) How much of initial mass is present after 80 years?

$$
y=10\left(\frac{1}{2}\right)^{\frac{80}{28}}=1.38 \mathrm{~g}
$$

Ex 6) The approximate number of fruit flies in an experimental population after t hours given by $Q(t)=20 e^{.03 t}$, where $t \geq 0$.
a) Find the initial number of fruit flies?

$$
Q(0)=20 e^{0.03(0)}=20.1=20 \mathrm{Plies}
$$

b) After 72 hours, how large is the population?

$$
\begin{aligned}
Q(72) & =200^{0.03(72)} \\
& =173 \times 1 .
\end{aligned}
$$

