3-2 Logarithm Functions and Their Graphs
An exponential function ($f(x)=a \times, a>0, a \neq 1$) passes the horizontal line test, therefore must have an inverse function...which is called a logarithmic function with base a.

Log Function: For $x>0, a>0, a \neq 1$

$$
y=\log _{a} x \quad \text { if and only if } \quad a^{y}=x
$$

Properties
exponenl:a /

1. $\log _{a} 1=0$ because $a^{0}=1$
2. $\log _{a} a=1$ because $a^{1}=1$
3. $\log _{a} a x=x$ and $\operatorname{alog}_{a x}=x$
4. If $\log _{a} x=\log _{a} y$, then $x=y$.

Natural Log: For $x>0, y=\ln x$ if and only if $e^{y}=x$.
Properties:

$$
y=\log _{e} x
$$

1. $\ln 1=0$ because $\mathrm{e}^{0}=1$
2. In $e=1$ because $e^{1}=e$
3. In $\mathrm{e}^{\mathrm{x}}=\mathrm{x}$ and $\mathrm{e}^{\ln \mathrm{x}}=\mathrm{x}$
4. If $\ln x=\ln y$, then $x=y$.
5. Write the log equation in exponential form.

Ex 1) $\log _{3} 81=4 \Rightarrow 3^{4}=81$
Ex 2) $\log _{7}(1 / 49)=-2 \Rightarrow 7^{-2}=\frac{1}{49}$
$\begin{gathered}\text { Ex } 3) \ln 1=0 \\ \log _{e} I=0\end{gathered} \longrightarrow e^{0}=1$
II. Write the exponential equation to log form.

Ex 4 ($8=64 \Rightarrow \log _{8} 64=2$
$E x(j) e x=4 \Rightarrow \log _{e} 4=x$
III. Evaluate without a calculator.

Ex 6) $f(x)=\log _{3} x, \quad x=1$

$$
\log _{3} 1=0
$$

$$
\begin{aligned}
& \text { Ex 7) } f(x)=\log _{4} x, \quad x=2 \\
& \log _{y} 2=y \\
& \begin{array}{ll}
4^{y} y=2 \\
\left(2^{2}\right)^{y} & =2
\end{array} \quad y=\frac{1}{2} \quad \cdot \quad \cdot \log _{y} 2=\frac{1}{2} \\
& 2^{2 y}=2^{1} \\
& 2 y=1
\end{aligned}
$$

Ex 8) $f(x)=\log _{16} x, \quad x=1 / 4$

$$
\begin{array}{ll}
\log _{16} \frac{1}{4}=y & 4^{2 y}=4^{-1} \\
16^{y}=\frac{1}{4} & 2 y=-1 \\
\left(y^{2}\right)^{y}=4 y & y=-\frac{1}{2}
\end{array}
$$

IV. Use a calculator to evaluate.

$$
{ }^{\operatorname{ExP}\left((x)=\log _{10}(x) x\right.}\left(\frac{x}{5}\right)=-0.0969
$$

v. Solve for x.

Ex 10) $\begin{aligned} 1058 & =\log _{7} 9 \\ X & =9\end{aligned}$

Ex 11) $\log _{6} 6^{2}=x$

$$
2=x
$$

