Day 2 on 3.2
I. Find the domain, vertical asymptote, x-intercept and then sketch by hand. (Read page 191)

$$
\text { Ex 1) } g(x)=\log _{6} x
$$

$$
\begin{aligned}
& D: x>0 \\
& (0, \infty) \\
& \text { VA. } x=0 \\
& 0=\log _{6} x \\
& 6^{0}=x^{2} \quad x \text {-in }(1,0) \\
& 1=x \quad
\end{aligned}
$$

$E x 2) h(x)=\log _{4}(x-3)$
$D: x-3>0$

$$
x>3(3, \infty)
$$

VA.: $x=3$
$x-\operatorname{int}:(4,0)$

$$
\begin{aligned}
& 0=\log _{4}(x-3) \\
& 40=x-3 \\
& 1=x-3 \\
& 4=x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
x & y \\
\hline 6 & 1 \\
36 & 2
\end{array} \\
& \log _{6} 6^{1}=1 \\
& \log _{6} 36=y \\
& \begin{array}{l}
\log _{6} 6^{6 y}=36 \\
=2
\end{array}
\end{aligned}
$$

Ex 3) $y=\log _{10}(x-1)+4$ $\begin{aligned} D: & x-1>0 \quad{ }^{209} \\ x>1 & (1, \infty)\end{aligned}$ V.A.: $x=1$

$$
\begin{aligned}
& x \text {-int: }\left(1+10^{-4}, 0\right) \\
& 0=120
\end{aligned}
$$

$$
0=\log _{10}(x-1)+4
$$

$$
-4=\log x
$$

$$
10^{-4}=x-1
$$

$$
1+10^{-4}=x
$$

II. Evaluate with a calculator to 3 decimals.

Ex 4) $f(x)=\ln x, \quad x=18.31$

$$
\ln 18.31=2.907
$$

III. Use the properties of natural logs to rewrite.

$$
\text { Ex5)-Ine }=-1
$$

$$
\begin{gathered}
\text { Ex 6) } 7 \operatorname{lne}^{0} \log _{e} e^{\circ}=7(0)=0 \\
7 \ln _{\eta}= \\
0
\end{gathered}
$$

