3.4 Solving Exponential and Logarithmic Equations

One-to-One Properties
$a x=a y$ if and only if $x=y$
$\log _{a} x=\log _{a} y$ if and only if $x=y$
Inverse Properties

$$
5^{\log _{5} 3}=3
$$

$$
\log _{\mathrm{a}} \mathrm{a}^{x}=\mathrm{x}
$$

I. Solve Simple Equations...solving for x.

Ex 1) a) $2 x=32$

$$
\begin{aligned}
& 2^{x}=2^{5} \\
& x=5
\end{aligned}
$$

b) $\ln x-\ln 3=0$

$$
\begin{aligned}
& \text { c) }(1 / 3) x=9 \\
& \left(3-x=3^{2}\right. \\
& 3^{-x}=3^{2}
\end{aligned} \Rightarrow \begin{aligned}
& -x=2 \\
& x=-2
\end{aligned}
$$

d) $e^{x}=7$

$$
\begin{aligned}
\ln e^{x} & =\ln 7 \\
x & =\ln 7
\end{aligned}
$$

$$
e_{100}^{11_{10}}=7
$$

$$
e^{\log _{e} 7}=7
$$

$$
7=7
$$

e) $\ln x=-3$

$$
\begin{gathered}
\text { Ex } 2) \ln (2 x-1)=5 \\
2 x-1=e^{5} \\
\frac{2 x}{2}=\frac{11 e^{5}}{2} \\
x=\frac{1+e^{5}}{2}
\end{gathered}
$$

Ex $\frac{4 e^{2 x}}{4}=\frac{40}{4}$

$$
\begin{array}{rlr}
e^{2 x} & =10 & x=\frac{\ln 10}{2} \\
\ln e^{2 x} & =\ln 10 \\
\frac{2 x}{2} & =\frac{\ln 10}{2} & x=1.151
\end{array}
$$

$$
\begin{array}{l|c}
\text { Ex 4) } 5^{-12}=.2 \\
S^{-\frac{1}{2} t}=0.2 & (-2) \\
S^{-\frac{1}{2} t \log 5^{-\frac{1}{2} t}=\log 5} 0.2 \\
5^{-\frac{1}{2} t}=5^{-1} & \frac{t \log 0.2^{(-2)}}{\log 5}=\frac{-2 \log 0.2}{\log 5} \\
(-2)-\frac{1}{2} t=-1(-2) & t=2
\end{array}
$$

November 07, 2013

$$
\begin{array}{cc}
\text { Ex } 5 \text { eo- } 50+6=0 \\
\left(e^{x}-3\right) & \left(e^{x}-2\right)=0 \\
e^{x}-3=0 & e^{x}-2=0 \\
e^{x}=3 & e^{x}=2 \\
\ln e^{x}=\ln 3 & \ln e^{x}=\ln 2 \\
x=\ln 3 & x=\ln 2
\end{array}
$$

