

Ex 2) Modeling Population Growth: In a research experiment, Mr. Johannes' population of fruit flies is increasing according to the law of exponential growth. After 2 days, there are 100 flies, and after 4 days, there are 300 flies. How many flies will there be after 5 days?

Ex 3) Carbon Dating: In living organic material, the ratio of the content of radioactive carbon isotopes (carbon 14) to the content of nonradioactive carbon isotopes (carbon 12) is about 1 to 10^{12}. When organic material dies, its carbon 12 content remains fixed, whereas its radioactive carbon 14 begins to decay with a half-life of 5730 years. To estimate the age of dead organic material, scientists use the following formula, which denotes the ratio of carbon 14 to carbon 12 present at any time t (in years).

$$
r=\frac{1}{10^{12}} e^{-v 8267}
$$

The ratio of carbon 14 to carbon 12 in a newly discovered fossil is $r=\frac{1}{10^{13}}$.

Estimate the age of the fossil.
$\left(10^{12}\right)$
$\frac{1}{10^{13}}=\frac{1}{1012} e^{-\frac{t}{826}} 7^{\left(\frac{115}{10}\right)}$

Ex 5) On the Richter Scale, the magnitude R of an earthquake of intensity I is given by $R=\log _{10}\left(I / I_{0}\right)$ where $I_{0}=1$ is the minimum intensity used for comparison. Intensity is a measure of the wave energy of an earthquake.

In 2001, the coast of Peru experienced an earthquake that measured 8.4 on the Richter scale. In 2003, Colima, Mexico experienced an earthquake that measured 7.6 on the Richter scale. Find the intensity of each earthquake and compare the two intensities.

$$
\begin{aligned}
& 8.4=\log _{10} \frac{I}{1} \\
& 7.6=\log _{10} \frac{7}{1} \\
& 10^{8.4}=I \\
& I \approx 251,188,693.2 \\
& 10^{7.6}=7 \\
& 7 \therefore 39,810,717.06 \\
& \frac{251,188,643.2}{39,810,717.06}=6.3 \\
& 6 \text { times one intake }
\end{aligned}
$$

