4.1 Radian and Degree Measure

Day 1
Trigonometry means "measurement of triangles"
I. Standard Position of Angles: Positive angles-Negative angles--

II. Radian Measure: One radian is the measure of a central angle Θ that intercepts an arc s equal in length to the radius r of the circle.

III. Quadrants:

IV. Radians versus Degrees

Radians to Degrees: multiply by 180/爪
Degrees to Radians: multiply by $\mathbb{\Phi} / 180$
Ex 1) Convert from one measure to the other.
B) $-48^{\circ} \cdot \frac{\pi}{180^{\circ}}$
C) $\frac{84}{13} \cdot 180^{\circ}$

$\cdot \frac{180}{\pi x}$
$=\frac{8.180}{13}$
D) -6.59 .160

$$
\text { \#F }=\frac{-6.5 \cdot 180}{1}=-1170^{\circ}
$$

Ex 2) Coterminal Angles: 2 angles that have the same initial and terminal side.

Find one positive and negative coterminal angle.
1.300 $+360=660^{\circ}$

$-360=-60^{\circ}$
2. $\frac{7 \pi}{6}+\frac{2 \pi}{1} \cdot 6=\frac{7 \pi}{6} \times \frac{12 \pi}{6}=\frac{19 \pi}{6}$
$\frac{7 \pi}{6}-\frac{4 \pi}{6}=\frac{7 \pi}{6}-\frac{2 \pi}{6}=-\frac{17 \pi}{6}$

Ex 3) Find the compliment and supplement of each angle, if possible.
A) $110^{\circ} \mathrm{C}: 90-110=10$ compliment
$5: 180-110=70^{\circ}$
B) \mathbb{I}

$$
\begin{aligned}
& c: \frac{\pi^{6}}{2} \cdot \frac{\pi}{12}=\frac{6 \pi}{12}-\frac{\pi}{12}=\frac{5 \pi}{12} \\
& s: \frac{\pi}{1} \cdot \frac{\pi}{12}=\frac{12 \pi}{12}-\frac{\pi}{12}=\frac{11 \pi}{\frac{1 \pi}{2}}
\end{aligned}
$$

