4.1 day 2
I. Decimal Degrees versus DMS (degrees, minutes, seconds)

Ex 1) $85^{\circ} 18^{\prime} 30^{\prime \prime}=85.308 \overline{3}$

Ex 2) $-124^{\circ} 30^{\prime}=-124.5$
Ex 3) $310.75^{\circ}=310^{\circ} 45^{1} 0^{11}$
II. Finding the arc length and radian measure: $\quad \theta=s / r$

Ex 4) Find the angle in radians.

Ex 5) Find the radian measure of the central angle of a circle with $r=22$ feet and arc length of 10.

$$
\begin{aligned}
& \theta=\frac{s}{n} \\
& \theta=\frac{10}{22}=\frac{5}{11} \text { indians }
\end{aligned}
$$

Ex 6) Find the arc length of a circle with $r=14$ inches and central angle of 180°.
$r \cdot \theta=\frac{S}{f} \quad 180^{\circ}=\pi$ radians
$S=r \theta$

III. Linear and Angular Speed

Linear Speed $=\frac{S}{t}$ How fast the particle moues
Angular speed $=\frac{e}{t}$ How fast the angle changes
Ex 7) The second hand of a clock is 10.2 cm . Find the linear speed of the tip of the second hand.

$$
\begin{aligned}
& \theta=\frac{s}{c} \quad L .5=\frac{20.4 \pi_{\mathrm{c}}}{60.5} \\
& s=18 \text { C. } \\
& S=10.2(2 \pi) \\
& S=20.4 \pi \mathrm{~cm}
\end{aligned}
$$

Ex 8) A lawn roller with a 10 inch radius wheel makes 1.2 revolutions per second.
A) Find the angular speed in radians per second.

$$
\dot{\theta}=\frac{s}{r}
$$

$A . S_{0}=\frac{\theta}{t}$

$$
\text { roller turns }(1.2)(2 \pi)=2.4 \pi \text { radions/soc }
$$

B) Find the speed of the tractor that is pulling the roller.

$$
\text { L.S. }=\frac{s}{t}=\frac{r \theta}{t}=\frac{(10)(2.4 \pi)}{1 s p_{c_{1}}}=\frac{24 \pi i_{i n}}{1 s_{p_{c}}}=6.283 \mathrm{k} \%
$$

