4-8 Applications and Models
Ex 1) Solve the right triangle given $A=54^{\circ}$ and $b=10$.

Round to 2 decimal places on all sides and angles.

$$
\angle B=36^{\circ}
$$

s

$$
\angle B=180-(54+90)
$$

$$
{\operatorname{csin} 236^{\circ}}^{5}=10<c \quad 3=a
$$

$$
\begin{aligned}
& \frac{c \sin 36^{\circ}}{\sin 16^{\circ}}=\frac{10}{\sin 36^{\circ}} \\
& c=17.01
\end{aligned}
$$

Ex 2) Solve the right triangle given $\mathrm{a}=25$ and $\mathrm{c}=35$.
Sin^{-1}

$\sin A=\frac{5 i=2}{35}$
$A=45.58^{\circ}$

$$
\begin{aligned}
& 2^{2}+b^{2}=35^{2} \\
& 625+b^{2}=1225 \\
& b^{2}=\sqrt{600} \\
& b=24.49 \\
& \angle B=180-(90+45.58) \\
& \angle A=45.49 \\
& \angle B=44.42
\end{aligned}
$$

Ex 3) From a point 50 feet in front of a church, the angles of elevation to the base of the steeple and the top of the steeple are 35° and $47^{\circ} 40^{\prime}$, respectively. Draw a picture of the situation. Use a trig function to write an equation involving the unknown quantity. Find the height of the steeple.

$a=35.010376$
50) $\tan 47.6^{\circ}=\frac{5+35.010376}{50} .50$
$50 \tan 47.6^{\circ}=5+35.10376$
$50 \tan 47.6^{\circ}=S+350.010376$
SOtan47. $6^{\circ}-35.010376=S$

Ex 5) An airplane flying at 600 miles per hour has a bearing of 52°. (see page 322) After flying 1.5 hours, how far north and how far east has the plane traveled from its point of departure?

-
-

Ex 6) A passenger in an airplane flying at an altitude of 10 kilometers sees two towns directly to the east of the plane. The angles of depression to the towns are 28 and 55 . How far apart are the towns?

