
III. Component Form: initial point $P=\left(p_{1}, p_{2}\right)$, terminal point $Q=\left(q_{1}, q_{2}\right)$

$$
P Q=\left\langle q_{1}-p_{1}, q_{2}-p_{2}\right\rangle \quad \text { (must start with } q \text {) }
$$

Ex 2) Find the component form and magnitude of the vector.

III. Addition/Scalar Multiplication: Page 410 and Properties on page 412

Ex 3) $u=<2,8>$ and $v=<-3,4>$
${ }_{\text {Rind }}^{\text {Pin }+v}=\langle 2 t-3,8+4\rangle=\langle-1,12\rangle$
bu $\mathrm{b}=\langle 2--3,8-4\rangle=\langle 5,4\rangle$
c) $3 u+5 v$
$3 u=\langle 3 \cdot 2,3 \cdot 8\rangle=\langle 6,24\rangle$
$S V=\langle 5, \ldots, 5 \cdot 4\rangle=\langle 120\rangle$

$$
S_{v}=\langle 5 \cdots,-, s,-4\rangle=\langle-15,\rangle
$$

IV. Unit Vectors: have a magnitude or length of 1. They are useful in many applications of vectors.

$$
\begin{aligned}
& \text { vectors. } \\
& \mathrm{u}=\text { unit vector }= \\
& \|\stackrel{\rightharpoonup}{V}\|
\end{aligned}
$$

Ex 4) Find a unit vector in the direction of the given vector. $v=\langle-2,5\rangle$

