

II. Graph the vectors and the resultant of the vectors. Find the magnitude and direction of the resultant.

Note: Trig Form of a Vector: $v=<\| \mathrm{lv} \mathrm{\| llcos} \theta$, Ilv\|lisin \rangle

$$
\begin{aligned}
& \text { Ex 4) } \\
& \text { say <600 } \left.\cos 20^{\circ}, 600 \sin 20^{\circ}\right\rangle \\
& m^{\circ 0}+<500 \cos 60^{\circ}, 500 \sin 60^{\circ} \\
& \langle 813.82,638.22\rangle \\
& \|\vec{v}\|=\sqrt{(81,38)^{2}+(638,22)^{2}} \\
& =1034.23
\end{aligned}
$$

III. Applications: Force $=$ Speed $=$ Magnitude

Ex 5) Find the component form of the vector that represents the velocity of an airplane descending at a speed of 100 mph at angle of 30 degrees below the horizontal (as shown).

Ex 6) My two kids wanted to take our 100 lb black lab Bailly for a walk. They devise a scheme to use 2 leashes on Bailly so both could attempt to walk her. Bailly rebels and starts pulling on the kids. Dani is pulling with a force of 20 lbs at an angle of 27 degrees while Drew is pulling with a force of 37 lbs at an angle of -15 degrees. How hard is Baily pulling if she holds Bani and Drew at a standstill?

