6.5 Trigonometric Form of a Complex Number

Day 1
**a unit circle is very helpful
I. The Complex Plane-- a complex number $z=a+b i,(a, b)$ is a point.

II. Absolute Value of a Complex Number: $z=a+b i$ absolute value $=I a+b i l=\sqrt{\left(a^{2}+b^{2}\right)}$
$E \times 1)|10-3 i| \quad r=\sqrt{a^{2}+b^{2}}$

III. Trig Form of a Complex Number: $z=a+b i$

$$
\begin{aligned}
& z=r(\cos \theta+i \sin \theta) \quad a=r \cos \theta \text {, and } b=r \sin \theta \\
& \text { Ex 1) 5-5i } \\
& r=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& r=5 \sqrt{2} \\
& \theta \text { is in standard } \\
& \theta=3 / 5^{\circ} \text { or } \frac{7 \pi}{4} \\
& \text { Position. }
\end{aligned}
$$

February 07, 2014

Ex 4) Find the product and quotient of the following two complex numbers.

$$
\begin{aligned}
& z_{1}=2\left(\cos \frac{2}{3} \pi^{+}+\frac{\sin \frac{2}{3} \pi}{} \quad z_{2}=8\left(\cos \frac{11}{6} \pi^{\left.+i \sin \frac{11}{6}\right)} \pi\right.\right. \\
& \frac{z_{1}}{z_{2}}=\frac{2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)}{8\left(\cos \frac{11 \pi}{3}\right)} \\
& \frac{2 \pi}{3}-\frac{11 \pi}{6} \\
& \frac{4 \pi}{6}-\frac{11 \pi}{6}=\frac{-7 \pi}{6}
\end{aligned}
$$

