
II. nth roots of a complex number: $z=r(\cos \theta+i \sin \theta)$ has exactly n distinct roots given by :

Ex 3) Find the three cube roots of $z=-2+2 i$.

February 10, 2014

$$
\begin{aligned}
& n \sqrt{n}(\underset{n}{\cos } \underline{\theta+2 \pi k}+\underset{n}{i \sin } \underline{\theta+2 \pi k}) \text { where } k=0,1,2, \ldots, n-1 \\
& \text { Let us now do \#95 in your homework together! } \\
& z=16\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right) \\
& n=4, r=16, \theta=240^{\circ} \\
& \begin{aligned}
K=0 \Rightarrow & \sqrt[4]{16}\left(\cos \frac{240+360.0}{4}+i \sin \frac{240+360.0}{4}\right) \\
& 2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)
\end{aligned} \\
& 2\left(\frac{1}{2} \times \sqrt{3}-i \sin 60^{\circ}\right) \\
& k=1 \Rightarrow-\frac{\sqrt{3}+i}{1+\sqrt{3} i} \\
& k=2 \Rightarrow-1-\sqrt{3} i \\
& k=3 \Rightarrow \sqrt{3}-i
\end{aligned}
$$

