## 7-6 The Inverse of a Square Matrix

I. Inverse of a Square Matrix: A must be a nun. $A \cdot A^{-1}=I_{n}=A^{-1} \cdot A$
(A-1 is read "A inverse")

Ex 1) Show that $B$ is the inverse of $A$, where


Important:
Not all square matrices have inverses.
$A B$ will most likely never be equal to $B A$.
If a matrix $A$ has an inverse, $A$ is called invertible or nonsingular.
II. Inverse of a $2 \times 2$.
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Ex 2) Find the inverse of $A=\left[\begin{array}{rr}2 & -4 \\ 4 & 8\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5\end{array}\right]$
$A^{-1}=\frac{1}{16-16}\left[\begin{array}{cc}8 & 4 \\ -4 & 2\end{array}\right]$
$A^{-1}=\frac{1}{32}\left[\begin{array}{cc}8 & 4\end{array}\right]$
$A^{-1}=\frac{1}{32}\left[\begin{array}{ll}8 & 4 \\ -4 & 2\end{array}\right]=\left(\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{8} \\ -1 & 8 \\ 8 & \frac{1}{6}\end{array}\right]\right.$

March 04, 2014


