9-1 Introduction to Conics: Parabolas

Conics-Take a look at Page 632 to see what they are.

Standard Form of a Parabola: vertex $=(h, k)$
』ด $(x-h)^{2}=4 p(y-k)$ Vertical axis of symmetry
CS $(y-k)^{2}=4 p(x-h)$ Horizontal axis of symmetry

At Origin: $\quad x^{2}=4 p y$

$$
y^{2}=4 p x
$$

Find the vertex, focus, and directrix of the parabola and sketch.
$E \times 1)^{2} y=(1 / 2) x^{2}(\tau)$
Vertex: $(0,0)$
$2 y=x^{2}$
$x^{2}=2 \dot{2} y$
Directrix: $y=-\frac{1}{2}$
$x^{2}=4 \rho y$
$2=4=4 y$
$2=4 p y$
$2=p$

Pispos. . goes up

Ex 3) (x+1)2 $2 n$	
$(x+1)^{2}=-8(y+3)=0$	
focus	Vertex: $(-1,-3)$
$4 p=-8$	Focus: $(-1,-5)$
$p=-2$	Directrix: $y=-1$

Find the standard form of the equation of the parabola with vertex at the origin.

Ex 5) Focus: $(-2,0)$
Ex 6) Directrix: $y=-1$

