9-2 Ellipses Day 1

Ellipse: $(h, k)=$ center $a>b$ minor $a x i s$ length $=2 b$, major $a x i s$ length $=2 a$, foci lie on the major axis " c " units from the center wit $c^{2}=a^{2}-b^{2}$

If $(h, k)=(O, O)$, then
$\frac{(x)^{2}}{a^{2}}+\frac{(y)^{2}}{b^{2}}=1 \quad$ (major axis horizontal)
$(x)^{2}+(y)^{2}=1$
$b^{2} \quad a^{2} \quad$ (major axis vertical)

$$
\text { Ex 3) } \frac{4 x^{2}}{36}+\frac{9 y^{2}}{36}=\frac{36}{36} \Rightarrow a^{2}=\frac{x^{2}}{9}+\frac{y^{2}}{b^{2}=4}=1
$$

Center: $(0,0)$
Vertices: $(-30)(3,0)$
Foci: $(\pm \sqrt{5}, 0)$

$$
a^{2}=9
$$

$$
9=3
$$

$$
\begin{aligned}
& \text { Ex 2) }(x+5)^{2}+(y-1)^{2}=1 \\
& a^{2}=(9 / 4) \quad b^{2}=1 \\
& \text { Center }(-5,1) \\
& \operatorname{Foci}\left(-5 \pm \frac{\sqrt{5}}{2}, 1\right) \\
& a^{2}=\frac{9}{4}(-5+3) \quad c^{2}=a^{2}-b^{2} \\
& a=\frac{\sqrt{9}}{\sqrt{4}}\left(-5+\frac{3}{2}, 1\right) \quad c^{2}=\frac{9}{4}-1 \\
& q=\frac{\sqrt{4}}{2}\left(-5-\frac{3}{2}, 1\right)
\end{aligned}
$$

$$
E x 4) x^{2}+4 y^{2}+6 x-8 y+9=0
$$

Center:
Vertices:
Foci:

Ex 5) $4 x^{2}+y^{2}-8 x+4 y-8=0$
Center: $(1,-2)(1,-6)$
Vertices: $: 1,2)$
loci: $(1,2 \pm 2 \sqrt{3})$
$\frac{(x-1)^{2}}{4=6^{2}}+\frac{(y+2)^{2}}{16 x^{2}}=1$ Foci: $(1,-2 \pm 2 \sqrt{3})$
$a^{2}=16$
$a=4$
$(1,-2+4)$
$(1,-2-4)$

$$
\begin{aligned}
& \text { S.) } 4 x^{2}+y^{2}-8 x+4 y-8=0 \\
& \left(4 x^{2}-8 x\right)+\left(y^{2}+4 y\right)=8+4 \\
& 4\left(x^{2}-2 x\right)+\left(y^{2}+4 y+4\right)=8+4 \\
& 4\left(x^{2}-2 x^{2}+1\right)+\left(y^{2}+4 y+4\right)=16 \\
& 4\left(\frac{2}{2}=1^{2} \downarrow\right. \\
& \frac{4(1)^{2}}{16}+\frac{(y+2)^{2}}{16}=\frac{16}{16} \\
& \frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=
\end{aligned}
$$

