

Find the center vertices, foci, and asymptotes. Sketch the graph. $\begin{array}{ll}\text { Ex 1) } \frac{y^{2}}{1}-\frac{x^{2}}{4}=1 \text { ロ~ } a^{2}=1 \\ & a=1\end{array}$ center: $(0,0)$ vertices: $(0,1)(0,-1)$
foci: $(0, \pm \sqrt{5})$ asymptotes:
$y=k t$
$\left.\begin{aligned} & y=0 \pm \frac{1}{2}(x-0) \\ & y= \pm \frac{1}{2} x\end{aligned} \right\rvert\, \begin{aligned} & 2 \\ & y=2\end{aligned}$

$\int_{\int}^{E x} \int^{4} \frac{(x-1)^{2}}{-(y+2)^{2}}{ }^{2}=1$
center: $(1 / 3-2)$
vertices: $(3,-2)(-1,-2)$
foci: $(1 \pm \sqrt{5},-2)$
asymptotes:

$$
\begin{aligned}
& a^{2}=4 \\
& 9=2 \\
& (1+2,-2) \\
& (1-2,-2)
\end{aligned}
$$

$$
\text { Ex 3) } \frac{9 x^{2}-\frac{4 y^{2}}{36}=\frac{36}{36}, \frac{3}{36}}{} \Rightarrow \frac{x^{2}}{4}-\frac{y^{2}}{9}=1
$$

$$
\begin{aligned}
& \text { center: }(0,0) \\
& \text { vertices: }(2,0)(-2,0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertices: }(2,0) \\
& \text { foci: } \pm \sqrt{13}, 0)
\end{aligned}
$$

$$
\text { asymptotes: } y= \pm \frac{3}{2} x
$$

$$
a^{2}=4
$$

$$
a=2
$$

$$
\begin{aligned}
& y=k \pm \frac{b}{9}(x-4) \\
& y=0 \pm \frac{3}{2}(x-0) \\
& y= \pm \frac{3}{2} x
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}=13 \\
& c=1
\end{aligned}
$$

Ex 4) $16 y^{2}-x^{2}+2 x+64 y+63=0$
center:
vertices:
foci:
asymptotes:

Find the standard form of the hyperbola with the center at $(0,0)$.
Ex 5) Vertices: $(0, \pm 2)$ and Foci: $(0, \pm 4)$
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

$c=4$
$c^{2}=16$

$$
c^{2}=a^{2}+b^{2}
$$

