9-7 Graphs of Polar Equations Day 1

Types of Polar Graphs—see page 687

Testing for Symmetry in Polar Coordinates

The graph of a polar equation is symmetric with respect to the following if the given substitution yields an equivalent equation.

- 1. The line $\theta = \pi/2$: Replace (r, θ) by $(r, \pi \theta)$ or $(-r, -\theta)$
- 2. The Polar Axis: Replace (r, θ) by $(-r, \pi \theta)$ or $(r, -\theta)$
- 3. The Pole: Replace (r, θ) by $(r, \pi + \theta)$ or $(-r, \theta)$

Test for Symmetry. You will need page 340 or identity sheet.

Ex 1) r = 10 + 4cos
$$\theta$$

r=10+(10s(-0))
(=10+400s0
... has symmetry about the polar axis

Ex2)
$$r = \frac{4}{1 + \sin \theta}$$
 $(-r, -\Theta)$ or $(r, \pi - \Theta)$

We think $\Theta = \frac{\pi}{2}$

Sin($v \pm v$)=Siou (os $V \pm cosusin V$
 $\Gamma = \frac{4}{1 + \sin \theta}$
 $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

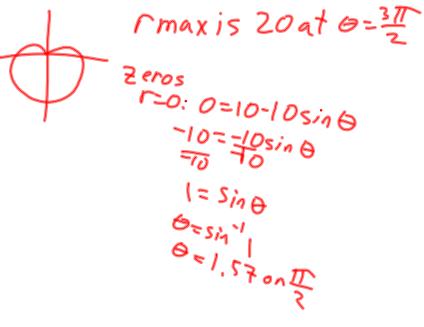
The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$

The single section of $\Gamma = \frac{4}{1 + \sin \theta}$


The single sectio

Ex 3) Find the maximum r-value for
$$r = 1-2\cos\theta$$

Graph it

(Max: $r = 3$ at $\theta = 17$
 $\frac{1}{3}$
 $\frac{1}{3} = \cos\theta$
 $\frac{1}{3} = \cos\theta$

Ex 4) Find the maximum r and zeros of r if r = 10 - 10sin θ

