
I. Describe how the graph of each is related to $y=x^{2}$.

$$
E x \text { 1) } f(x)=-\frac{1}{2}(x+3)^{2}-1 \quad E x \text { 2) } y=2(x-3)^{2}+1
$$

II. Standard form of a Quadratic: $f(x)=a(x-h)^{2}+k, \quad a \neq 0$

Ex 3) Sketch the graph and identify the vertex and x-intercepts. Use a
grapher to verify.
A) $f(x)=(x+4)^{2}-3$ V. $(-4,-3)$ x-ht: $0=\left(x+4^{2}-3\right.$
$\sqrt{3}(x+4)^{2}$
$\pm \sqrt{3}=x+4$
$-4 \pm \sqrt{3}=x$

$$
\begin{aligned}
& \begin{array}{l}
B) f(x)=x^{2}-7 \\
f(x)=(x+0)^{2}-7 \\
v:(0,-7) \\
x-i n t: 0=x^{2}-7 \\
\sqrt{7}=\sqrt{x^{2}} \\
\pm \sqrt{7}=x
\end{array} .
\end{aligned}
$$

c) $f(x)=\left(x^{2}+2 x-6\right)$

$$
\begin{aligned}
& \text { D) } \left.h(x)=x^{2}\right) 8 x+16 \\
& h(x)=(x-4)^{2} \\
& V:(4,0) \\
& x-\operatorname{int}:(4,0) \\
& E) h(x)=-x^{2}+6 x-8 \\
& h(x)=\left(-\frac{x^{2}+6 x}{-1} \frac{-1}{-1}\right)-8- \\
& =-\left(x^{2}-26 x+9\right)-8-9 \\
& \frac{6}{2}=(33) \\
& h(x)=-(x-3)^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f) f(x)=2 x^{2}+8 x+7 \\
f(x)=\left(\frac{2 x}{2}+\frac{8}{2}, \quad\right)+7-
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& r(x)=2(x+2)^{2}-1 \quad 0=2(x+2)^{2}-1 \\
& v:(-3,-1) \\
& \begin{array}{l}
\sqrt{1}_{1}^{2}=2(x+2)^{2} \\
+\sqrt{2}=1 \times 2)^{2} \\
-2 \pm \sqrt{2}=x+2 \\
\underbrace{\frac{1}{2}=x}
\end{array}
\end{aligned}
$$

